LearnTool Deep DivesQdrant Vector Database Guide: Open-Source AI Search for Australia
intermediate
15 min read
15 January 2025

Qdrant Vector Database Guide: Open-Source AI Search for Australia

Master Qdrant for building powerful vector search applications. Complete guide to self-hosted and cloud deployment, filtering, and production optimisation for Australian developers.

Clever Ops Team

Qdrant is a high-performance, open-source vector database that's rapidly becoming the preferred choice for developers who need full control over their AI infrastructure. For Australian businesses with data sovereignty requirements or those seeking cost-effective scaling, Qdrant offers a compelling combination of performance, flexibility, and deployment options.

This comprehensive guide covers everything from local development to production deployment of Qdrant, with practical examples and Australian business context throughout. Whether you're building a RAG system, semantic search engine, or recommendation platform, understanding Qdrant empowers you to build AI applications with complete infrastructure control.

What You'll Learn

  • Qdrant architecture and key advantages
  • Local and Docker deployment options
  • Collection configuration and optimisation
  • Advanced filtering and payload management
  • Qdrant Cloud for managed deployment
  • Production scaling and performance tuning

Key Takeaways

  • Qdrant is a high-performance, open-source vector database built in Rust with both self-hosted and cloud options
  • Self-hosting on AWS Sydney enables full data sovereignty compliance for Australian businesses
  • Advanced filtering capabilities support complex hybrid queries combining semantic search with attribute filters
  • Payload indexing significantly improves filtered query performance—index fields you filter on frequently
  • Namespace-based multi-tenancy provides secure data isolation without separate collections
  • Qdrant Cloud offers managed deployment with Australian region availability for reduced operational burden
  • Production deployments should implement API authentication, TLS encryption, and regular snapshot backups

Why Choose Qdrant?

Qdrant distinguishes itself through exceptional performance, rich filtering capabilities, and deployment flexibility. Built in Rust for speed and reliability, it handles production workloads while remaining accessible for development.

10x Faster Than Python-Based DBs
100% Open Source
Sub-ms Query Latency Possible

Qdrant vs Other Vector Databases

Feature Qdrant Pinecone Weaviate Chroma
Open Source ✓ Apache 2.0 ✗ Managed only ✓ BSD-3 ✓ Apache 2.0
Self-Hosted ✓ Full support ✗ No ✓ Full support ✓ Full support
Cloud Option ✓ Qdrant Cloud ✓ Primary ✓ Weaviate Cloud ✗ Limited
Performance Excellent (Rust) Excellent Good (Go) Moderate
Filtering Advanced Good Advanced Basic
Australian DC ✓ Self-host/AWS Sydney ✗ US/EU only ✓ Self-host ✓ Self-host

Key Advantages for Australian Businesses

Data Sovereignty

Self-host in Australian data centres or on AWS Sydney. Full control over where your data resides for Privacy Act compliance.

Cost Control

No per-query pricing. Pay only for infrastructure. Significant savings at scale compared to managed services.

Low Latency

Deploy close to your users. Australian-hosted Qdrant means sub-50ms queries from local applications.

Full Customisation

Tune every parameter. Implement custom distance metrics. Integrate with existing infrastructure seamlessly.

Getting Started with Qdrant

Qdrant offers multiple deployment options from local development to production clusters. Let's explore each approach.

Option 1: Docker (Recommended for Development)

# Pull and run Qdrant container
docker pull qdrant/qdrant
docker run -p 6333:6333 -p 6334:6334 \
    -v $(pwd)/qdrant_storage:/qdrant/storage:z \
    qdrant/qdrant

# Qdrant is now available at:
# REST API: http://localhost:6333
# gRPC: localhost:6334
# Dashboard: http://localhost:6333/dashboard

Option 2: Docker Compose (Production-Ready)

# docker-compose.yml
version: '3.8'

services:
  qdrant:
    image: qdrant/qdrant:latest
    restart: always
    ports:
      - "6333:6333"
      - "6334:6334"
    volumes:
      - ./qdrant_storage:/qdrant/storage
      - ./qdrant_config:/qdrant/config
    environment:
      - QDRANT__SERVICE__API_KEY=your-secure-api-key
      - QDRANT__SERVICE__ENABLE_TLS=true
    deploy:
      resources:
        limits:
          memory: 4G
        reservations:
          memory: 2G

Option 3: Local Binary (Quick Testing)

# Download latest release
wget https://github.com/qdrant/qdrant/releases/latest/download/qdrant-x86_64-unknown-linux-gnu.tar.gz
tar -xzf qdrant-x86_64-unknown-linux-gnu.tar.gz

# Run with default config
./qdrant

Install Python Client

# Install Qdrant client
pip install qdrant-client

# For async support
pip install qdrant-client[fastembed]

Connect and Verify

from qdrant_client import QdrantClient

# Connect to local instance
client = QdrantClient(host="localhost", port=6333)

# Or connect with API key
client = QdrantClient(
    host="localhost",
    port=6333,
    api_key="your-api-key"
)

# Verify connection
print(client.get_collections())

Collections and Data Management

Collections in Qdrant are similar to tables in traditional databases. They store vectors along with associated payload data and support sophisticated filtering.

Creating a Collection

from qdrant_client import QdrantClient, models

client = QdrantClient(host="localhost", port=6333)

# Create collection with optimal settings
client.create_collection(
    collection_name="australian_documents",
    vectors_config=models.VectorParams(
        size=1536,  # OpenAI embedding dimension
        distance=models.Distance.COSINE
    ),
    # Optimise for different workloads
    optimizers_config=models.OptimizersConfigDiff(
        indexing_threshold=20000,  # When to build index
        memmap_threshold=50000     # When to use disk
    ),
    # Payload schema for filtering
    hnsw_config=models.HnswConfigDiff(
        m=16,           # Connections per node
        ef_construct=100  # Build-time accuracy
    )
)

Understanding Distance Metrics

Cosine

Best for normalised embeddings. Most common choice for text embeddings from OpenAI, Cohere, etc.

Range: -1 to 1

Euclidean

Direct distance between points. Good for image embeddings and when magnitude matters.

Range: 0 to ∞

Dot Product

Fastest computation. Use when vectors are already normalised or for recommendation systems.

Range: -∞ to ∞

Inserting Vectors with Payloads

from qdrant_client import models
import uuid

# Single point insertion
client.upsert(
    collection_name="australian_documents",
    points=[
        models.PointStruct(
            id=str(uuid.uuid4()),
            vector=embedding,  # Your 1536-dim vector
            payload={
                "title": "Privacy Act 1988 Overview",
                "category": "compliance",
                "state": "federal",
                "date": "2024-01-15",
                "word_count": 2500,
                "tags": ["privacy", "legislation", "data-protection"]
            }
        )
    ]
)

# Batch insertion (much faster)
points = [
    models.PointStruct(
        id=str(uuid.uuid4()),
        vector=doc["embedding"],
        payload={
            "title": doc["title"],
            "content": doc["text"][:1000],
            "category": doc["category"],
            "source": doc["source"]
        }
    )
    for doc in documents
]

# Upload in batches
batch_size = 100
for i in range(0, len(points), batch_size):
    batch = points[i:i + batch_size]
    client.upsert(
        collection_name="australian_documents",
        points=batch
    )

Payload Indexing for Fast Filtering

# Create payload indexes for fields you'll filter on
client.create_payload_index(
    collection_name="australian_documents",
    field_name="category",
    field_schema=models.PayloadSchemaType.KEYWORD
)

client.create_payload_index(
    collection_name="australian_documents",
    field_name="date",
    field_schema=models.PayloadSchemaType.DATETIME
)

client.create_payload_index(
    collection_name="australian_documents",
    field_name="word_count",
    field_schema=models.PayloadSchemaType.INTEGER
)

Advanced Querying and Filtering

Qdrant's filtering capabilities are among the most powerful of any vector database, enabling complex hybrid search queries that combine semantic similarity with precise attribute filtering.

Basic Similarity Search

# Simple vector search
results = client.search(
    collection_name="australian_documents",
    query_vector=query_embedding,
    limit=10
)

for result in results:
    print(f"Score: {result.score:.4f}")
    print(f"Title: {result.payload.get('title')}")
    print(f"Content: {result.payload.get('content')[:200]}...")
    print("---")

Filtered Search (Hybrid Queries)

# Filter by category
results = client.search(
    collection_name="australian_documents",
    query_vector=query_embedding,
    query_filter=models.Filter(
        must=[
            models.FieldCondition(
                key="category",
                match=models.MatchValue(value="compliance")
            )
        ]
    ),
    limit=10
)

# Multiple conditions with AND
results = client.search(
    collection_name="australian_documents",
    query_vector=query_embedding,
    query_filter=models.Filter(
        must=[
            models.FieldCondition(
                key="category",
                match=models.MatchValue(value="compliance")
            ),
            models.FieldCondition(
                key="state",
                match=models.MatchAny(any=["NSW", "VIC", "federal"])
            ),
            models.FieldCondition(
                key="date",
                range=models.Range(gte="2024-01-01")
            )
        ]
    ),
    limit=10
)

Complex Filter Combinations

# OR conditions with should
results = client.search(
    collection_name="australian_documents",
    query_vector=query_embedding,
    query_filter=models.Filter(
        should=[
            models.FieldCondition(
                key="category",
                match=models.MatchValue(value="privacy")
            ),
            models.FieldCondition(
                key="tags",
                match=models.MatchAny(any=["data-protection", "GDPR"])
            )
        ]
    ),
    limit=10
)

# Nested AND/OR
results = client.search(
    collection_name="australian_documents",
    query_vector=query_embedding,
    query_filter=models.Filter(
        must=[
            models.FieldCondition(
                key="word_count",
                range=models.Range(gte=1000, lte=5000)
            )
        ],
        should=[
            models.Filter(
                must=[
                    models.FieldCondition(
                        key="category",
                        match=models.MatchValue(value="compliance")
                    ),
                    models.FieldCondition(
                        key="state",
                        match=models.MatchValue(value="federal")
                    )
                ]
            ),
            models.Filter(
                must=[
                    models.FieldCondition(
                        key="category",
                        match=models.MatchValue(value="legal")
                    )
                ]
            )
        ]
    ),
    limit=10
)

Text Matching Filters

# Full-text search within payload (requires text index)
client.create_payload_index(
    collection_name="australian_documents",
    field_name="content",
    field_schema=models.TextIndexParams(
        type="text",
        tokenizer=models.TokenizerType.WORD,
        min_token_len=2,
        max_token_len=15,
        lowercase=True
    )
)

# Search with text filter
results = client.search(
    collection_name="australian_documents",
    query_vector=query_embedding,
    query_filter=models.Filter(
        must=[
            models.FieldCondition(
                key="content",
                match=models.MatchText(text="privacy breach")
            )
        ]
    ),
    limit=10
)
Filter Type Use Case Example
MatchValue Exact match category = "compliance"
MatchAny Multiple values (OR) state IN ["NSW", "VIC"]
MatchExcept Exclusion status NOT IN ["draft"]
Range Numeric/date ranges date >= "2024-01-01"
MatchText Full-text search content CONTAINS "privacy"
IsEmpty Null checks tags IS NOT EMPTY

Building a RAG System with Qdrant

Let's build a complete retrieval-augmented generation system using Qdrant, designed for Australian business knowledge management.

from qdrant_client import QdrantClient, models
from openai import OpenAI
from typing import Optional
import uuid

class AustralianKnowledgeRAG:
    """RAG system using Qdrant for Australian business knowledge."""

    def __init__(
        self,
        qdrant_host: str = "localhost",
        qdrant_port: int = 6333,
        qdrant_api_key: Optional[str] = None,
        openai_api_key: str = None,
        collection_name: str = "au_knowledge"
    ):
        # Initialize clients
        self.qdrant = QdrantClient(
            host=qdrant_host,
            port=qdrant_port,
            api_key=qdrant_api_key
        )
        self.openai = OpenAI(api_key=openai_api_key)
        self.collection_name = collection_name
        self.embedding_model = "text-embedding-3-small"

        # Ensure collection exists
        self._init_collection()

    def _init_collection(self):
        """Create collection if it doesn't exist."""
        collections = self.qdrant.get_collections().collections
        exists = any(c.name == self.collection_name for c in collections)

        if not exists:
            self.qdrant.create_collection(
                collection_name=self.collection_name,
                vectors_config=models.VectorParams(
                    size=1536,
                    distance=models.Distance.COSINE
                )
            )

            # Create payload indexes
            for field, schema in [
                ("category", models.PayloadSchemaType.KEYWORD),
                ("source", models.PayloadSchemaType.KEYWORD),
                ("date", models.PayloadSchemaType.DATETIME)
            ]:
                self.qdrant.create_payload_index(
                    collection_name=self.collection_name,
                    field_name=field,
                    field_schema=schema
                )

    def get_embedding(self, text: str) -> list[float]:
        """Generate embedding for text."""
        response = self.openai.embeddings.create(
            input=text,
            model=self.embedding_model
        )
        return response.data[0].embedding

    def add_documents(self, documents: list[dict]) -> int:
        """Add documents to the knowledge base."""
        points = []

        for doc in documents:
            embedding = self.get_embedding(doc["content"])
            points.append(
                models.PointStruct(
                    id=str(uuid.uuid4()),
                    vector=embedding,
                    payload={
                        "title": doc.get("title", ""),
                        "content": doc["content"],
                        "category": doc.get("category", "general"),
                        "source": doc.get("source", ""),
                        "date": doc.get("date", ""),
                        "metadata": doc.get("metadata", {})
                    }
                )
            )

        # Batch upload
        self.qdrant.upsert(
            collection_name=self.collection_name,
            points=points
        )

        return len(points)

    def search(
        self,
        query: str,
        limit: int = 5,
        category: Optional[str] = None,
        min_score: float = 0.7
    ) -> list[dict]:
        """Search for relevant documents."""
        query_embedding = self.get_embedding(query)

        # Build filter
        filter_conditions = []
        if category:
            filter_conditions.append(
                models.FieldCondition(
                    key="category",
                    match=models.MatchValue(value=category)
                )
            )

        query_filter = models.Filter(must=filter_conditions) if filter_conditions else None

        results = self.qdrant.search(
            collection_name=self.collection_name,
            query_vector=query_embedding,
            query_filter=query_filter,
            limit=limit,
            score_threshold=min_score
        )

        return [
            {
                "title": r.payload.get("title", ""),
                "content": r.payload.get("content", ""),
                "category": r.payload.get("category", ""),
                "source": r.payload.get("source", ""),
                "score": r.score
            }
            for r in results
        ]

    def generate_response(
        self,
        query: str,
        context_docs: list[dict]
    ) -> str:
        """Generate response using retrieved context."""
        context = "

---

".join([
            f"Source: {doc['title']} ({doc['source']})
{doc['content']}"
            for doc in context_docs
        ])

        system_prompt = """You are an expert assistant for Australian businesses.
Use Australian English spelling (organisation, colour, centre).
Answer based on the provided context. Cite sources where relevant.
If the context doesn't contain the answer, acknowledge this."""

        response = self.openai.chat.completions.create(
            model="gpt-4",
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": f"Context:
{context}

Question: {query}"}
            ],
            temperature=0.3
        )

        return response.choices[0].message.content

    def ask(
        self,
        query: str,
        category: Optional[str] = None,
        limit: int = 5
    ) -> dict:
        """Complete RAG pipeline."""
        docs = self.search(query, limit=limit, category=category)

        if not docs:
            return {
                "query": query,
                "response": "I couldn't find relevant information for your query.",
                "sources": []
            }

        response = self.generate_response(query, docs)

        return {
            "query": query,
            "response": response,
            "sources": [{"title": d["title"], "source": d["source"]} for d in docs]
        }

# Usage example
rag = AustralianKnowledgeRAG(
    openai_api_key="your-key",
    collection_name="au_business_knowledge"
)

# Add documents
rag.add_documents([
    {
        "title": "Privacy Act Overview",
        "content": "The Privacy Act 1988 regulates...",
        "category": "compliance",
        "source": "OAIC"
    }
])

# Query
result = rag.ask(
    "What are the key requirements under the Privacy Act?",
    category="compliance"
)

💡 Need expert help with this?

Qdrant Cloud: Managed Deployment

For teams that want Qdrant's capabilities without infrastructure management, Qdrant Cloud provides a fully managed service with global deployment options.

Getting Started with Qdrant Cloud

  1. Sign up at cloud.qdrant.io
  2. Create a cluster (free tier available)
  3. Choose your region (AWS Sydney available for Australian latency)
  4. Generate an API key

Connecting to Qdrant Cloud

from qdrant_client import QdrantClient

# Connect to Qdrant Cloud
client = QdrantClient(
    url="https://your-cluster-id.aws.cloud.qdrant.io:6333",
    api_key="your-api-key"
)

# All operations work the same as self-hosted
client.create_collection(
    collection_name="my_collection",
    vectors_config=models.VectorParams(
        size=1536,
        distance=models.Distance.COSINE
    )
)

Qdrant Cloud Pricing

Tier Vectors Monthly Cost (USD) Best For
Free 1M vectors $0 Development, testing
Starter 5M vectors ~$25 Small production apps
Standard 25M vectors ~$100 Medium workloads
Enterprise Custom Custom Large scale, compliance

Self-Hosted vs Cloud Decision Matrix

Factor Self-Hosted Qdrant Cloud
Setup Time Hours to days Minutes
Maintenance Your responsibility Managed
Data Sovereignty Full control Region selection
Cost at Scale Infrastructure only Premium pricing
Compliance Your audit SOC 2 available

Production Deployment and Scaling

Deploying Qdrant in production requires attention to performance tuning, high availability, and monitoring.

Performance Tuning

# Optimise collection for performance
client.update_collection(
    collection_name="production_docs",
    optimizer_config=models.OptimizersConfigDiff(
        # Index threshold - lower = faster indexing, higher = better performance
        indexing_threshold=10000,
        # Memory mapping threshold
        memmap_threshold=50000
    ),
    hnsw_config=models.HnswConfigDiff(
        # Higher m = better recall, more memory
        m=16,
        # Higher ef_construct = better index quality, slower build
        ef_construct=100
    )
)

# Set search-time parameters
results = client.search(
    collection_name="production_docs",
    query_vector=query_embedding,
    limit=10,
    search_params=models.SearchParams(
        # Higher ef = better recall, slower search
        hnsw_ef=128,
        # Exact search (slower but 100% recall)
        exact=False
    )
)

High Availability with Distributed Mode

# docker-compose-cluster.yml
version: '3.8'

services:
  qdrant-node1:
    image: qdrant/qdrant:latest
    ports:
      - "6333:6333"
    volumes:
      - ./node1_storage:/qdrant/storage
    environment:
      - QDRANT__CLUSTER__ENABLED=true
      - QDRANT__CLUSTER__P2P__PORT=6335

  qdrant-node2:
    image: qdrant/qdrant:latest
    ports:
      - "6334:6333"
    volumes:
      - ./node2_storage:/qdrant/storage
    environment:
      - QDRANT__CLUSTER__ENABLED=true
      - QDRANT__CLUSTER__P2P__PORT=6335
      - QDRANT__CLUSTER__BOOTSTRAP=http://qdrant-node1:6335

Monitoring and Health Checks

# Health check endpoint
import requests

def check_qdrant_health(host: str, port: int) -> dict:
    """Check Qdrant health status."""
    response = requests.get(f"http://{host}:{port}/healthz")
    return response.json()

# Get telemetry data
def get_telemetry(host: str, port: int) -> dict:
    """Get Qdrant metrics."""
    response = requests.get(f"http://{host}:{port}/telemetry")
    return response.json()

# Collection statistics
def get_collection_stats(client, collection_name: str) -> dict:
    """Get detailed collection statistics."""
    info = client.get_collection(collection_name)
    return {
        "vectors_count": info.vectors_count,
        "points_count": info.points_count,
        "segments_count": len(info.segments),
        "status": info.status,
        "optimizer_status": info.optimizer_status
    }

Backup and Recovery

# Create snapshot
snapshot_info = client.create_snapshot(collection_name="production_docs")
print(f"Snapshot created: {snapshot_info.name}")

# List snapshots
snapshots = client.list_snapshots(collection_name="production_docs")

# Recover from snapshot
client.recover_snapshot(
    collection_name="production_docs",
    location=f"http://localhost:6333/collections/production_docs/snapshots/{snapshot_name}"
)

Production Checklist

  • ✓ Enable API key authentication
  • ✓ Configure TLS for encrypted connections
  • ✓ Set up regular automated snapshots
  • ✓ Monitor memory and disk usage
  • ✓ Implement health check endpoints
  • ✓ Use payload indexes for filtered queries
  • ✓ Test recovery procedures
  • ✓ Document collection schemas

Australian Deployment Case Study

A Sydney-based legal tech startup deployed Qdrant to power their contract analysis platform, demonstrating self-hosted vector database deployment for Australian data sovereignty requirements.

Case Study: Legal Document Search Platform

Challenge

The startup needed semantic search across millions of legal documents while maintaining strict data sovereignty requirements. Documents contained sensitive client information that couldn't leave Australian jurisdiction.

Solution
  • Infrastructure: Self-hosted Qdrant on AWS Sydney (ap-southeast-2)
  • Architecture: 3-node cluster for high availability
  • Security: TLS encryption, API key auth, VPC isolation
  • Integration: Custom embedding pipeline with local model option
Technical Implementation
# Multi-tenant namespace strategy
def get_client_namespace(client_id: str) -> str:
    return f"client_{client_id}"

# Secure document ingestion
def ingest_client_document(
    client_id: str,
    document: dict,
    qdrant_client: QdrantClient
):
    namespace = get_client_namespace(client_id)

    # Embed with local model for sensitive docs
    if document.get("sensitivity") == "high":
        embedding = local_embedding_model.encode(document["text"])
    else:
        embedding = openai_embed(document["text"])

    qdrant_client.upsert(
        collection_name="legal_docs",
        points=[
            models.PointStruct(
                id=document["id"],
                vector=embedding,
                payload={
                    "title": document["title"],
                    "type": document["doc_type"],
                    "date": document["date"],
                    "parties": document["parties"],
                    "jurisdiction": document["jurisdiction"]
                }
            )
        ],
        # Tenant isolation via namespace
        namespace=namespace
    )
Results
100% Australian Data Residency
<30ms Average Query Latency
$2K/mo Infrastructure Cost
Key Learnings
  • Self-hosting provides full control for compliance requirements
  • AWS Sydney region offers excellent latency for Australian users
  • Namespace-based multi-tenancy enables secure client isolation
  • Hybrid embedding approach balances performance and sensitivity

Conclusion

Qdrant offers Australian businesses a powerful, flexible vector database solution with full control over data and infrastructure. Whether you choose self-hosted deployment for data sovereignty or Qdrant Cloud for convenience, the platform delivers the performance and features needed for production AI applications.

The combination of open-source transparency, Rust-powered performance, and sophisticated filtering capabilities makes Qdrant particularly well-suited for building semantic search, RAG systems, and recommendation engines. For organisations with compliance requirements or cost-sensitive workloads, self-hosting in Australian data centres provides complete control while maintaining sub-millisecond query performance.

Start with Docker for development, validate your use case with real data, and scale confidently knowing that Qdrant's architecture supports everything from single-node deployments to distributed clusters handling billions of vectors.

Frequently Asked Questions

Is Qdrant suitable for production use?

How does Qdrant compare to Pinecone for Australian businesses?

What are the infrastructure requirements for self-hosting?

How do I handle multi-tenancy in Qdrant?

What embedding models work best with Qdrant?

How do I migrate from another vector database?

What is the query latency for Qdrant?

How do I secure my Qdrant deployment?

Ready to Implement?

This guide provides the knowledge, but implementation requires expertise. Our team has done this 500+ times and can get you production-ready in weeks.

✓ FT Fast 500 APAC Winner✓ 500+ Implementations✓ Results in Weeks