LearnImplementation GuidesTesting AI Systems: Strategies for Reliable LLM Applications
intermediate
13 min read
20 January 2025

Testing AI Systems: Strategies for Reliable LLM Applications

Comprehensive guide to testing AI applications. Learn evaluation frameworks, test dataset creation, automated testing, regression detection, and quality assurance for production LLM systems.

Clever Ops AI Team

Testing AI systems is fundamentally different from testing traditional software. You can't write a unit test that checks "assert response == expected_output" when the same input might produce multiple correct responses. LLMs are non-deterministic, outputs are natural language (subjective quality), and edge cases are infinite.

Yet testing is more important for AI systems, not less. A bug in traditional code affects predictable scenarios. A bad prompt or model degradation in an AI system affects thousands of users in unpredictable ways. The challenge is building test frameworks that account for AI's probabilistic nature while still catching regressions and ensuring quality.

This guide provides a comprehensive testing strategy for AI applications: creating diverse test datasets that represent real usage, building automated evaluation pipelines, detecting regressions when models or prompts change, implementing A/B testing in production, and establishing human review processes for subjective quality. Whether you're building RAG systems, chatbots, or classification models, these testing patterns will help you ship with confidence.

Key Takeaways

  • Test datasets should include 30% happy path, 40% edge cases, 20% adversarial inputs, 10% regression cases—aim for 100-500 cases minimum for production systems
  • Use automated metrics appropriate to task type: accuracy/F1 for classification, ROUGE/BERTScore for generation, recall@k/MRR for retrieval quality
  • Implement regression testing in CI/CD: block PRs if accuracy drops >5% vs baseline, save versioned test results for comparison, test every prompt/model change
  • A/B test all significant changes in production: need 1000+ interactions per variant for statistical significance, track both automated metrics and user feedback
  • Production monitoring detects drift: run subset of tests hourly, alert if performance drops >5% vs 7-day baseline, indicates model degradation or data distribution shift
  • Human evaluation is necessary for subjective quality: sample 20-50 responses, rate on accuracy, helpfulness, tone, clarity (1-5 scale), use for decisions when automated metrics disagree
  • Version control everything: test datasets, baseline results, prompts, model configurations—enables reproducing results and tracing regressions to specific changes

Building Comprehensive Test Datasets

Quality testing starts with quality test data. Let's build datasets that represent real-world usage.

Test Set Composition

A well-balanced test set includes:

  • Happy path (30%): Typical, straightforward inputs that should work perfectly
  • Edge cases (40%): Unusual but valid inputs that test robustness
  • Adversarial (20%): Tricky, ambiguous, or malformed inputs
  • Regression cases (10%): Inputs that previously caused failures

Creating Test Cases

Test Dataset Builderpython
from dataclasses import dataclass
from typing import List, Dict, Any
import json

@dataclass
class TestCase:
    id: str
    input: str
    expected_output: str
    category: str  # happy_path, edge_case, adversarial, regression
    difficulty: str  # easy, medium, hard
    metadata: Dict[str, Any]
    tags: List[str]

class TestDatasetBuilder:
    def __init__(self):
        self.test_cases = []

    def add_case(self, test_case: TestCase):
        """Add a test case to the dataset."""
        self.test_cases.append(test_case)

    def add_from_production(self, production_logs, num_samples=100):
        """Sample real production queries as test cases."""
        # Get diverse sample
        samples = self._diverse_sample(production_logs, num_samples)

        for i, log in enumerate(samples):
            # Get human verification of correct output
            expected = self._get_human_verified_output(log['input'])

            self.add_case(TestCase(
                id=f"prod_{i}",
                input=log['input'],
                expected_output=expected,
                category="production_sample",
                difficulty=self._estimate_difficulty(log['input']),
                metadata={"source": "production", "timestamp": log['timestamp']},
                tags=self._extract_tags(log['input'])
            ))

    def add_edge_cases(self):
        """Add common edge cases."""
        edge_cases = [
            # Empty/minimal input
            TestCase(
                id="edge_empty",
                input="",
                expected_output="I need more information to help you.",
                category="edge_case",
                difficulty="medium",
                metadata={},
                tags=["empty_input"]
            ),

            # Very long input
            TestCase(
                id="edge_long",
                input="a " * 5000,  # 5000 words
                expected_output="Your message is very long. Could you summarize your question?",
                category="edge_case",
                difficulty="medium",
                metadata={"length": 10000},
                tags=["long_input"]
            ),

            # Special characters
            TestCase(
                id="edge_special_chars",
                input="Hello!!! $$$ @#%^&* ???",
                expected_output="Hello! How can I help you today?",
                category="edge_case",
                difficulty="easy",
                metadata={},
                tags=["special_characters"]
            ),

            # Multiple languages
            TestCase(
                id="edge_multilingual",
                input="Hello, こんにちは, Bonjour",
                expected_output="Hello! I can help you in English. How can I assist?",
                category="edge_case",
                difficulty="hard",
                metadata={},
                tags=["multilingual"]
            )
        ]

        for case in edge_cases:
            self.add_case(case)

    def save(self, filepath):
        """Save test dataset to file."""
        with open(filepath, 'w') as f:
            json.dump([vars(tc) for tc in self.test_cases], f, indent=2)

    def load(self, filepath):
        """Load test dataset from file."""
        with open(filepath, 'r') as f:
            data = json.load(f)
            self.test_cases = [TestCase(**item) for item in data]

# Build test dataset
builder = TestDatasetBuilder()

# Add manual test cases
builder.add_case(TestCase(
    id="classify_billing_1",
    input="I was charged twice for my subscription",
    expected_output="billing",
    category="happy_path",
    difficulty="easy",
    metadata={"expected_category": "billing"},
    tags=["classification", "billing"]
))

# Add edge cases
builder.add_edge_cases()

# Sample from production
builder.add_from_production(production_logs, num_samples=50)

# Save
builder.save("test_dataset.json")

Data Versioning

Test Dataset Versioningpython
class TestDatasetVersion:
    """Version control for test datasets."""

    def __init__(self, base_path="./test_datasets"):
        self.base_path = Path(base_path)
        self.base_path.mkdir(exist_ok=True)

    def save_version(self, test_cases, version_name):
        """Save a versioned test dataset."""
        version_file = self.base_path / f"{version_name}.json"

        with open(version_file, 'w') as f:
            json.dump({
                "version": version_name,
                "created_at": datetime.now().isoformat(),
                "count": len(test_cases),
                "test_cases": [vars(tc) for tc in test_cases]
            }, f, indent=2)

        print(f"Saved version '{version_name}' with {len(test_cases)} test cases")

    def load_version(self, version_name):
        """Load a specific version."""
        version_file = self.base_path / f"{version_name}.json"

        with open(version_file, 'r') as f:
            data = json.load(f)
            return [TestCase(**tc) for tc in data["test_cases"]]

# Usage
versioner = TestDatasetVersion()

# Save current test set
versioner.save_version(test_cases, "v1.0_baseline")

# Later, after adding more cases
versioner.save_version(updated_test_cases, "v1.1_added_edge_cases")

# Load specific version for regression testing
baseline_tests = versioner.load_version("v1.0_baseline")

Automated Evaluation Frameworks

Automated testing enables continuous quality assurance. Let's build evaluation pipelines.

Classification Task Evaluation

Classification Evaluatorpython
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix
import numpy as np

class ClassificationEvaluator:
    def __init__(self, llm_client, prompt_template):
        self.client = llm_client
        self.prompt_template = prompt_template

    def evaluate(self, test_cases):
        """Evaluate classification performance."""
        predictions = []
        ground_truth = []

        for test in test_cases:
            # Get prediction
            prompt = self.prompt_template.format(input=test.input)
            prediction = self.client.generate(prompt).strip().lower()

            predictions.append(prediction)
            ground_truth.append(test.expected_output.lower())

        # Calculate metrics
        accuracy = accuracy_score(ground_truth, predictions)
        precision, recall, f1, _ = precision_recall_fscore_support(
            ground_truth, predictions, average='weighted'
        )

        # Confusion matrix
        cm = confusion_matrix(ground_truth, predictions)

        return {
            "accuracy": accuracy,
            "precision": precision,
            "recall": recall,
            "f1_score": f1,
            "confusion_matrix": cm.tolist(),
            "predictions": list(zip(ground_truth, predictions))
        }

    def identify_failure_patterns(self, results):
        """Identify common failure patterns."""
        failures = [
            (gt, pred) for gt, pred in results["predictions"]
            if gt != pred
        ]

        # Group by failure type
        failure_patterns = {}
        for gt, pred in failures:
            key = f"{gt} -> {pred}"
            failure_patterns[key] = failure_patterns.get(key, 0) + 1

        # Sort by frequency
        sorted_failures = sorted(
            failure_patterns.items(),
            key=lambda x: x[1],
            reverse=True
        )

        return sorted_failures

# Usage
evaluator = ClassificationEvaluator(llm_client, prompt_template)
results = evaluator.evaluate(test_cases)

print(f"Accuracy: {results['accuracy']:.1%}")
print(f"F1 Score: {results['f1_score']:.3f}")

# Find common mistakes
patterns = evaluator.identify_failure_patterns(results)
print("\nMost common failures:")
for pattern, count in patterns[:5]:
    print(f"  {pattern}: {count} times")

Generation Task Evaluation

Generation Quality Evaluatorpython
from rouge import Rouge
from bert_score import score as bert_score

class GenerationEvaluator:
    def __init__(self, llm_client):
        self.client = llm_client
        self.rouge = Rouge()

    def evaluate(self, test_cases):
        """Evaluate generation quality."""
        predictions = []
        references = []

        for test in test_cases:
            prediction = self.client.generate(test.input)
            predictions.append(prediction)
            references.append(test.expected_output)

        # ROUGE scores (overlap-based)
        rouge_scores = self.rouge.get_scores(predictions, references, avg=True)

        # BERTScore (semantic similarity)
        P, R, F1 = bert_score(predictions, references, lang="en", verbose=False)

        return {
            "rouge_1": rouge_scores["rouge-1"]["f"],
            "rouge_2": rouge_scores["rouge-2"]["f"],
            "rouge_l": rouge_scores["rouge-l"]["f"],
            "bert_score_precision": P.mean().item(),
            "bert_score_recall": R.mean().item(),
            "bert_score_f1": F1.mean().item()
        }

# Usage
gen_evaluator = GenerationEvaluator(llm_client)
results = gen_evaluator.evaluate(test_cases)

print(f"ROUGE-L: {results['rouge_l']:.3f}")
print(f"BERTScore F1: {results['bert_score_f1']:.3f}")

RAG System Evaluation

RAG System Evaluatorpython
class RAGEvaluator:
    """Evaluate RAG system performance."""

    def evaluate_retrieval(self, test_cases, rag_system):
        """Evaluate retrieval quality."""
        metrics = {
            "recall_at_5": [],
            "mrr": [],  # Mean Reciprocal Rank
            "avg_relevance_score": []
        }

        for test in test_cases:
            # Get retrieved documents
            retrieved = rag_system.retrieve(test.input, top_k=5)

            # Check if relevant docs were retrieved
            relevant_doc_ids = test.metadata.get("relevant_docs", [])
            retrieved_ids = [doc["id"] for doc in retrieved]

            # Calculate recall@5
            recall = len(set(retrieved_ids) & set(relevant_doc_ids)) / len(relevant_doc_ids)
            metrics["recall_at_5"].append(recall)

            # Calculate MRR
            for i, doc_id in enumerate(retrieved_ids, 1):
                if doc_id in relevant_doc_ids:
                    metrics["mrr"].append(1.0 / i)
                    break
            else:
                metrics["mrr"].append(0.0)

            # Average relevance score
            avg_score = np.mean([doc["score"] for doc in retrieved])
            metrics["avg_relevance_score"].append(avg_score)

        return {
            "recall_at_5": np.mean(metrics["recall_at_5"]),
            "mrr": np.mean(metrics["mrr"]),
            "avg_relevance_score": np.mean(metrics["avg_relevance_score"])
        }

    def evaluate_answer_quality(self, test_cases, rag_system):
        """Evaluate generated answer quality."""
        faithfulness_scores = []
        relevance_scores = []

        for test in test_cases:
            answer = rag_system.generate_answer(test.input)

            # Faithfulness: is answer grounded in retrieved context?
            faithfulness = self._check_faithfulness(
                answer,
                rag_system.last_retrieved_context
            )
            faithfulness_scores.append(faithfulness)

            # Relevance: does answer address the question?
            relevance = self._check_relevance(answer, test.input)
            relevance_scores.append(relevance)

        return {
            "faithfulness": np.mean(faithfulness_scores),
            "relevance": np.mean(relevance_scores)
        }

    def _check_faithfulness(self, answer, context):
        """Use LLM to check if answer is faithful to context."""
        prompt = f"""Does this answer contain only information from the context?

Context: {context}

Answer: {answer}

Respond with just a number 0-1 where:
- 1.0 = completely faithful, all claims supported by context
- 0.5 = partially faithful, some unsupported claims
- 0.0 = not faithful, makes claims not in context

Score:"""

        score = float(llm.generate(prompt).strip())
        return score

Regression Testing and Continuous Monitoring

Catch regressions before they reach production. Automated regression testing is critical.

Baseline Comparison Framework

Regression Detectionpython
class RegressionDetector:
    def __init__(self, baseline_results_path):
        self.baseline = self._load_baseline(baseline_results_path)

    def _load_baseline(self, path):
        """Load baseline test results."""
        with open(path, 'r') as f:
            return json.load(f)

    def detect_regression(self, current_results, threshold=0.05):
        """Detect if performance regressed vs baseline."""
        regressions = []

        for metric in ["accuracy", "f1_score", "rouge_l"]:
            if metric not in self.baseline or metric not in current_results:
                continue

            baseline_value = self.baseline[metric]
            current_value = current_results[metric]

            # Check for regression
            delta = baseline_value - current_value

            if delta > threshold:
                regressions.append({
                    "metric": metric,
                    "baseline": baseline_value,
                    "current": current_value,
                    "delta": delta,
                    "severity": "critical" if delta > threshold * 2 else "warning"
                })

        return regressions

    def generate_report(self, current_results):
        """Generate regression test report."""
        regressions = self.detect_regression(current_results)

        if not regressions:
            return "✅ No regressions detected. All metrics within acceptable range."

        report = "⚠️  REGRESSIONS DETECTED\n\n"
        for reg in regressions:
            report += f"{reg['severity'].upper()}: {reg['metric']}\n"
            report += f"  Baseline: {reg['baseline']:.3f}\n"
            report += f"  Current:  {reg['current']:.3f}\n"
            report += f"  Delta:    {reg['delta']:.3f}\n\n"

        return report

# Usage
detector = RegressionDetector("baseline_results_v1.0.json")

# Run tests with new prompt/model
current_results = run_evaluation(test_cases, new_prompt)

# Check for regressions
report = detector.generate_report(current_results)
print(report)

if regressions:
    # Block deployment
    raise RegressionError("Performance regression detected!")

CI/CD Integration

GitHub Actions CI/CD for AI Testsyaml
name: AI System Tests

on:
  pull_request:
    paths:
      - 'prompts/**'
      - 'src/llm/**'

jobs:
  test:
    runs-on: ubuntu-latest

    steps:
      - uses: actions/checkout@v2

      - name: Set up Python
        uses: actions/setup-python@v2
        with:
          python-version: '3.9'

      - name: Install dependencies
        run: |
          pip install -r requirements-test.txt

      - name: Run regression tests
        env:
          OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
        run: |
          python -m pytest tests/test_ai_system.py --verbose

      - name: Compare with baseline
        run: |
          python scripts/regression_check.py

      - name: Comment on PR
        if: failure()
        uses: actions/github-script@v6
        with:
          script: |
            github.rest.issues.createComment({
              issue_number: context.issue.number,
              owner: context.repo.owner,
              repo: context.repo.repo,
              body: '⚠️ AI regression tests failed. Review the test results before merging.'
            })

Continuous Monitoring in Production

Production Monitoringpython
class ProductionMonitor:
    """Monitor AI system performance in production."""

    def __init__(self, test_suite):
        self.test_suite = test_suite
        self.results_history = []

    def run_hourly_tests(self):
        """Run subset of tests every hour in production."""
        # Select fast, representative test cases
        quick_tests = [
            tc for tc in self.test_suite
            if tc.metadata.get("quick_test", False)
        ]

        # Run evaluation
        results = self.evaluate(quick_tests)

        # Store results with timestamp
        results["timestamp"] = datetime.now().isoformat()
        self.results_history.append(results)

        # Check for drift
        if len(self.results_history) >= 24:  # 1 day of hourly tests
            self._detect_drift()

        return results

    def _detect_drift(self):
        """Detect performance drift over time."""
        # Get last 24 hours of results
        recent = self.results_history[-24:]

        # Calculate average accuracy
        recent_avg = np.mean([r["accuracy"] for r in recent])

        # Compare with last week
        week_ago = self.results_history[-168:-144]  # 7 days ago, 24 hour window
        if week_ago:
            week_avg = np.mean([r["accuracy"] for r in week_ago])

            # Check for drift
            if recent_avg < week_avg * 0.95:  # 5% drop
                self._alert_drift(recent_avg, week_avg)

    def _alert_drift(self, current, baseline):
        """Send alert about performance drift."""
        message = f"""
        🚨 AI Performance Drift Detected

        Current accuracy: {current:.1%}
        Baseline (1 week ago): {baseline:.1%}
        Drop: {(baseline - current):.1%}

        This may indicate:
        - Model degradation
        - Data distribution shift
        - Prompt/config changes
        """

        send_alert_to_slack(message)

# Schedule in production
import schedule

monitor = ProductionMonitor(test_suite)
schedule.every().hour.do(monitor.run_hourly_tests)

while True:
    schedule.run_pending()
    time.sleep(60)

A/B Testing in Production

The ultimate test is real users. A/B testing validates changes in production.

A/B Test Framework

A/B Testing Frameworkpython
import hashlib

class ABTest:
    def __init__(self, name, variant_a, variant_b, split=0.5):
        self.name = name
        self.variant_a = variant_a
        self.variant_b = variant_b
        self.split = split
        self.results = {"A": [], "B": []}

    def assign_variant(self, user_id):
        """Deterministically assign user to variant."""
        # Hash user_id to get consistent assignment
        hash_value = int(hashlib.md5(user_id.encode()).hexdigest(), 16)
        return "A" if (hash_value % 100) < (self.split * 100) else "B"

    def get_response(self, user_id, input_text):
        """Get response from assigned variant."""
        variant = self.assign_variant(user_id)

        if variant == "A":
            response = self.variant_a.generate(input_text)
        else:
            response = self.variant_b.generate(input_text)

        # Track assignment
        self.results[variant].append({
            "user_id": user_id,
            "input": input_text,
            "response": response,
            "timestamp": datetime.now()
        })

        return response, variant

    def collect_feedback(self, user_id, variant, feedback):
        """Collect user feedback (thumbs up/down, rating, etc.)."""
        # Find the interaction
        for interaction in self.results[variant]:
            if interaction["user_id"] == user_id:
                interaction["feedback"] = feedback
                break

    def analyze(self):
        """Analyze A/B test results."""
        analysis = {}

        for variant in ["A", "B"]:
            interactions = self.results[variant]
            feedback = [i.get("feedback") for i in interactions if "feedback" in i]

            if feedback:
                # Calculate metrics (assuming binary feedback: 1 = positive, 0 = negative)
                analysis[variant] = {
                    "total_interactions": len(interactions),
                    "feedback_count": len(feedback),
                    "response_rate": len(feedback) / len(interactions),
                    "positive_rate": sum(feedback) / len(feedback) if feedback else 0,
                    "sample_responses": [i["response"] for i in interactions[:3]]
                }

        # Statistical significance test
        if analysis["A"]["feedback_count"] > 30 and analysis["B"]["feedback_count"] > 30:
            p_value = self._calculate_significance(
                analysis["A"]["positive_rate"],
                analysis["B"]["positive_rate"],
                analysis["A"]["feedback_count"],
                analysis["B"]["feedback_count"]
            )
            analysis["p_value"] = p_value
            analysis["significant"] = p_value < 0.05

        return analysis

    def _calculate_significance(self, rate_a, rate_b, n_a, n_b):
        """Calculate statistical significance (simplified)."""
        from scipy import stats

        # Two-proportion z-test
        successes = [rate_a * n_a, rate_b * n_b]
        trials = [n_a, n_b]

        z_stat, p_value = stats.proportions_ztest(successes, trials)
        return p_value

# Usage
test = ABTest(
    name="prompt_v1_vs_v2",
    variant_a=PromptV1(),
    variant_b=PromptV2(),
    split=0.5
)

# In production
user_id = request.user.id
response, variant = test.get_response(user_id, user_input)

# Later, collect feedback
test.collect_feedback(user_id, variant, feedback=1)  # Positive

# Analyze after 1000+ interactions
results = test.analyze()

if results.get("significant"):
    winner = "A" if results["A"]["positive_rate"] > results["B"]["positive_rate"] else "B"
    print(f"Variant {winner} is statistically significantly better!")

Human Evaluation and Quality Assurance

Some aspects of quality require human judgment. Let's structure human evaluation effectively.

Human Evaluation Interface

Human Evaluation Toolpython
class HumanEvaluationTool:
    def __init__(self, test_cases):
        self.test_cases = test_cases
        self.evaluations = []

    def evaluate_sample(self, sample_size=20):
        """Present random sample for human evaluation."""
        import random

        sample = random.sample(self.test_cases, min(sample_size, len(self.test_cases)))

        for i, test in enumerate(sample, 1):
            print(f"\n{'='*80}")
            print(f"Evaluation {i}/{len(sample)}")
            print(f"{'='*80}")

            # Get AI response
            response = llm.generate(test.input)

            print(f"\nInput: {test.input}")
            print(f"\nAI Response: {response}")
            print(f"\nExpected: {test.expected_output}")

            # Collect ratings
            ratings = self._collect_ratings()

            self.evaluations.append({
                "test_id": test.id,
                "input": test.input,
                "response": response,
                "expected": test.expected_output,
                "ratings": ratings
            })

    def _collect_ratings(self):
        """Collect ratings from human evaluator."""
        criteria = {
            "accuracy": "Is the information correct? (1-5)",
            "helpfulness": "Does it solve the user's problem? (1-5)",
            "tone": "Is the tone appropriate? (1-5)",
            "clarity": "Is it clear and well-written? (1-5)"
        }

        ratings = {}
        for criterion, description in criteria.items():
            while True:
                try:
                    rating = int(input(f"{description}: "))
                    if 1 <= rating <= 5:
                        ratings[criterion] = rating
                        break
                except ValueError:
                    pass

        return ratings

    def generate_report(self):
        """Generate human evaluation report."""
        if not self.evaluations:
            return "No evaluations collected."

        # Calculate average scores
        avg_scores = {}
        for criterion in ["accuracy", "helpfulness", "tone", "clarity"]:
            scores = [e["ratings"][criterion] for e in self.evaluations]
            avg_scores[criterion] = sum(scores) / len(scores)

        report = "Human Evaluation Report\n"
        report += "="*50 + "\n\n"

        report += "Average Scores (1-5):\n"
        for criterion, score in avg_scores.items():
            report += f"  {criterion.capitalize()}: {score:.2f}\n"

        # Identify low-scoring examples
        low_scoring = [
            e for e in self.evaluations
            if sum(e["ratings"].values()) / len(e["ratings"]) < 3.0
        ]

        if low_scoring:
            report += f"\n{len(low_scoring)} examples scored below 3.0 average.\n"

        return report

# Usage
evaluator = HumanEvaluationTool(test_cases)
evaluator.evaluate_sample(sample_size=20)
print(evaluator.generate_report())

Conclusion

Testing AI systems requires a multi-faceted approach: comprehensive test datasets covering happy paths and edge cases, automated evaluation pipelines for continuous quality checks, regression detection to catch performance degradation, A/B testing with real users in production, and human evaluation for subjective quality dimensions.

The key is building testing into your development workflow from day one. Every prompt change should run through regression tests. Every model upgrade should be A/B tested. Every new feature should expand the test suite. Testing AI systems is more work than testing traditional software, but the investment pays off in reliability, user satisfaction, and confidence in your system.

Start simple: build a test set of 50-100 cases covering your most important scenarios, set up automated evaluation that runs on every change, and establish a baseline. Then incrementally add sophistication: expand test coverage, implement production monitoring, add A/B testing, and incorporate human evaluation. With robust testing, you can iterate quickly while maintaining quality.

Frequently Asked Questions

How many test cases do I need for reliable AI testing?

What is the difference between automated and human evaluation?

How do I test AI systems when outputs are non-deterministic?

Should I test in production or staging?

What metrics should I track for RAG systems specifically?

How often should I run regression tests?

What do I do when tests fail but the output seems correct?

How do I create a test dataset if I don't have production data yet?

Can I use GPT-4 to evaluate GPT-4 outputs?

What is the biggest testing mistake teams make with AI systems?

Ready to Implement?

This guide provides the knowledge, but implementation requires expertise. Our team has done this 500+ times and can get you production-ready in weeks.

✓ FT Fast 500 APAC Winner✓ 500+ Implementations✓ Results in Weeks
AI Implementation Guide - Learn AI Automation | Clever Ops